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Abstract
Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a
constant electric field. In this paper we show numerically that electrons in different types of
carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric
field applied along the nanotube axis. We show these oscillations, calculating the quadratic
displacement as a function of the electric field. Because of the double periodicity of the
nanotubes’ geometry (the lattice constant and the lines of atoms) two frequencies appear, one
twice the value of the other. These frequencies coincide perfectly with those predicted for a
linear chain of atoms, taking into account the periodicity considered in each case.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Carbon nanotubes (CNTs) can behave as metallic or
semiconducting depending on their chirality, as has been well
known since they were discovered by Iijima in 1991 [1]. Thus,
CNTs are a great test bed for experiments with a large impact
on semiconductor physics (see [2, 3] for a general review).
Much effort has been dedicated to investigate junctions made
of different kinds of CNTs [4–9], mechanical properties and
even structural or mechanical deformations [10, 11]. Recent
experiments show that CNTs could be used as nanoelectronic
devices [12–16] and show other important quantum properties,
e.g. quantum dot behaviour [17, 11, 18–21].

Bloch oscillations of the electronic wavepacket take place
when an electron is under the influence of an electric field in
a periodic potential (a crystal) [22, 23]. These oscillations
are due to the Bragg reflections at the edges of the Brillouin
regions. Although they were predicted in 1934, those
oscillations were not observed until 1992 [27], thanks to
advances in the fabrication of semiconductors. In addition,
these Bloch oscillations have been observed experimentally
in other physical systems, such as mechanical systems [24]
cold atoms in optical lattices [25] and light pulses in photonic
crystals [26].

The period and the amplitude of Bloch oscillations can be
obtained with [28]:

TB = h

eFd
, (1)

AB = δ

eF
, (2)

where d is the period of the potential (lattice constant), δ is
the width of the energy band where the electron moves, and
F is the applied electric field. This is equivalent to a Bloch
frequency ωB = 2πeFd/h, a linear relation with the electric
field F .

The behaviour of the extended and localized waves under
the influence of an electric field is quite different. In the latter
case, the wave propagates along the system and comes back
to its initial position after a time given by equation (1), but
the wave propagates in such way that its centre does not move
from the initial position. In the former case, extended waves,
the centre of the wavepacket oscillates, with a period given by
equation (1).

In this paper we investigate the temporal evolution of
electrons in carbon nanotubes of type armchair and zig-zag
under constant electric fields. We show that these molecules
present Bloch oscillations, when an electric field is applied
along the nanotube axis. We study the dynamics of these
oscillations as a function of the electric field.
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Figure 1. Occupation probability versus time (horizontal axis) for an armchair nanotube (6, 6) with 180 unit cells: (a) the results for
271 MV m−1; (b) the results for 542 MV m−1. The value of occupation probability increases from dark to light (from dark blue to red in the
online version).

2. Model

We firstly obtain the stationary properties for a nanotube using
a time independent tight-binding model. Then, we apply a
constant electric field F simply by adding the electric energy in
the diagonal elements of the Hamiltonian matrix. To construct
the Hamiltonian, we are using a π -electron approximation;
even though this is quite a simplistic model, it reproduces quite
well the general features of the electronic transport [18]. Our
Hamiltonian for localized Wannier functions is given by:

H = H0 + Ht + HF . (3)

In this equation the first term H0, the on-site energy is given
by:

H0 =
∑

i

E0i a
†
i ai , (4)

where we set E0i = 0. a†
i and ai terms represent creation and

annihilation operators. The second term in equation (3) is the
hopping term:

Ht = −t
∑

〈i, j〉
a†

i a j + c.c., (5)

where c.c. is the complex conjugate. i and j are restricted to
bonded atoms, and t is the overlap energy which is equal to
2.66 eV. Finally, HF in equation (3) is obtained as:

HF =
∑

i

Ei a
†
i ai , (6)

the applied electric field is taken into account through the
calculation of the electric energy Ei :

Ei = neFy, (7)

F being the applied electric field and y the coordinate of atom
i , we place the nanotube axis parallel to the y axis. Temporal
evolution of the electronic wavefunction is given as a linear
combination of the stationary states of the system with the
electric field. We denote these stationary eigenenergy terms
and wavefunctions as U j and |� j〉, respectively. Then, |�(t)〉
can be written as:

|�(t)〉 =
∑

j

C j e
−iU j t/h̄ |� j〉, (8)

where the coefficients C j are the occupation amplitude of
the system in the state j . They can be calculated through
the projection of the initial state over each state j of the
Hamiltonian:

C j = 〈� j |�(t = 0)〉. (9)

Here we consider two kinds of initial conditions: localized
or extended states. For the localized case, the electron is placed
in a middle site of the nanotube and for the extended case, we
use a nanotube eigenfunction in the absence of electric field
F = 0.

The averaged quadratic displacement gives us a measure
of the dispersion of the wavefunction in space which is
obtained in the direction of propagation of the wavefunctions
along the axis of the nanotube (y axis, as stated before):

〈y2(t)〉 =
∑

i

|�(t)|2|y|2. (10)

3. Results and discussion

We study the dynamics of wavefunctions in the presence of a
one-dimensional constant electric field using equation (8).

For our calculations we use different kinds of nanotubes
for different chiralities and different conductive behaviours,

2



J. Phys.: Condens. Matter 21 (2009) 212202 Fast Track Communication

t(fs) t(fs)

y(nm
)

0

5

10

15

y(
nm

)

O
cc

up
at

io
n 

pr
ob

ab
il

it
y

Lowest

Highest
a) b)

Figure 2. (a) Occupation probability versus time for a (6, 6) armchair nanotube with 60 unit cells. The applied electric field is
F = 1355 MV m−1. (b) Occupation probability versus time for a linear chain of atoms where the unit cell has two different atoms. The
applied electric field in this case is F = 2033 MV m−1. In both figures we can see that there are two frequencies for the oscillation, one twice
the value of the other.
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Figure 3. Occupation probability versus time for: (a) a (6, 6) metallic armchair nanotube for F = 542 MV m−1, (b) a (9, 0) metallic zig-zag
nanotube for F = 1174 MV m−1, and (c) a (8, 0) semiconductor zig-zag nanotube for F = 1174 MV m−1. The time intervals have been
adjusted differently for (a)–(c) in order to show a full oscillation period.

characterized by the numbers (n, m): (6, 6) armchair metallic
nanotube, (8, 0) semiconductor and (9, 0) metallic zig-zag
nanotubes. The behaviour of extended and localized waves
is significantly different. We describe the dynamics of the
oscillations for initially localized waves, using Wannier states
and also for initially extended electronic eigenfunctions. By
initially, we mean the electronic state before applying the
electric field.

For the (6, 6) armchair nanotube we obtain the occupation
probability as a function of time, which we plot in figure 1.
Figure 1(a) shows the results for the electric field F =
271 MV m−1, where a is the lattice constant of bidimensional
graphite a = 2.46 Å. Figure 1(b) shows the results for F =
542 MV m−1. Different colours are used for different values
of the occupation probability. More specifically, from dark to
light (from dark blue colour to red colour in the online version)
the value of occupation probability increases, as shown in
figure 1. For the sake of clarity, contrast is automatically
adjusted for each figure.

We obtain the period of oscillations, as well as their
amplitude and check these results with equations (1) and (2)
for a linear chain of atoms, with lattice constant d = a. As
can be seen in figure 2(a), we have a mix of oscillations with
two different frequencies ωB and ωB/2, first one half then the
other, which is related to the fact that armchair nanotubes have
two lines of atoms in the unit cell. This is analogous to the
behaviour of a linear chain of atoms with two different kinds of
atoms, A and B, alternatively positioned with lattice constants
d = a and d = a/2. In this case we have a double periodicity
too. A numerical simulation of this system can be seen in
figure 2(b), whose behaviour is very similar to figure 2(a).

A similar behaviour to that of the metallic nanotube
(6, 6) is obtained for other kinds of nanotubes with different
conductive regimes and chirality, as can be seen in figure 3. In
this figure we show the occupation probability versus time for
metallic nanotubes (6, 6) (figure 3(a)) and (9, 0) (figure 3(b)),
together with semiconductor nanotubes (8, 0) (figure 3(c)).
The time intervals are different for each nanotube, as we
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Figure 4. Averaged quadratic displacement as a function of time for a wavefunction in a nanotube (6, 6) of length L = 60a. We show the
results obtained for different values of electric field F .

have modified the horizontal scale in these figures in order
to see clearly the periodicity of each oscillation. The zig-zag
nanotubes also present two oscillations, αωB, one of which is
half the other, with α = √

3/2 = 0.87, which is explained
below.

The averaged quadratic displacement is obtained through
equation (10). As Bloch theory predicts, this function must
show oscillations as well as the occupation probability does.
In figure 4 we show the averaged quadratic displacement as
a function of time for a nanotube (6, 6) of length L = 60a
for different values of the electric field. It is clear that the
frequency is an increasing function of electric field and the
amplitude decreases with electric field, these results are in
agreement with equations (1) and (2), for the one-dimensional
case.

Fourier transformation of the averaged quadratic displace-
ment allows us to obtain the frequency of these oscillations. In
figure 5 we show the largest frequency of the oscillation ωB

as a function of the electric field, for different lengths of the
(6, 6) nanotube. The frequency does not depend on the length
of the nanotube, as expected from theoretical expressions. This
is clearly seen in the figure. One can check that the results
are very similar for zig-zag nanotubes, in the sense that they
present a linear relation of the Bloch frequency with the elec-
tric field. Nevertheless, the slopes for zig-zag nanotubes are
slightly different. In the case of the nanotube (6, 6) a linear
regression of the experimental data gives us a periodicity for
d = a. In the case of zig-zag nanotubes the slope gives us a
periodicity for d = αa, being α = cos(φ − 30) = 0.87, where
φ is the chiral angle of any zig-zag nanotube. The theoretical
line drawn in figure 5 has been obtained with equation (1) for
the one-dimensional case.

As we have discussed earlier in this paper, in the case
of extended waves the dynamics of Bloch oscillations shows
different behaviour to that of localized states. The centre of

Figure 5. Frequency of the oscillation of averaged quadratic
displacement as a function of the electric field. The continuous line
corresponds to the theoretical expression (1). The points marked
correspond to the results obtained with the numerical calculations.
The figure shows the results for a nanotube (6, 6) of different
lengths.

the wavepacket moves periodically for extended waves, which
is not the case for the localized states. We also show the
wavefunctions for the (6, 6) nanotube in figure 6, where the
results have been obtained for a nanotube with 90 unit cells
and different values of the electric field. In figure 6(a) there
is no electric field F = 0, and in figure 6(b) an electric field
F = 90 MV m−1 is applied, no Bloch oscillation has been
formed due to border reflection. In figure 6(c) for an electric
field F = 406 MV m−1, a Bloch oscillation phenomenon takes
place.

We also obtain the frequency of the oscillations for
extended waves through the calculation of the Fourier
transform of averaged quadratic displacement. Our numerical
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Figure 6. Occupation probability for a wavefunction versus time for
a (6, 6) nanotube of length L = 90a for extended states as initial
condition: (a) the results for an electric field F = 0; (b) for
F = 90 MV m−1, where the wave is reflected at the borders of the
system and Bloch oscillations cannot be formed; (c) for
F = 406 MV m−1, where Bloch oscillations are revealed.

results for nanotubes agree with theoretical predictions for a
linear chain of atoms (equation (1)).

4. Conclusions

In summary, in this paper we have studied the behaviour of
different kinds of carbon nanotubes under the influence of a
constant electric field. We have shown that the dynamics of
the electrons in this kind of structure show Bloch oscillations;
the armchair shows the Bloch frequency ωB = eFa/h, with
a the lattice constant of the bidimensional graphite. The
frequency of these oscillations has been identified through
the calculation of the Fourier transform and it fits quite well
with the theoretical equations obtained for an electron in a
linear chain of atoms. Both armchair and zig-zag present two
oscillations with two frequencies one half the value of the
other.
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